Закон Ома для электической цепи

Основным законом электродинамики является закон Ома.

Закон Ома для участка цепи (без учёта источника) - сила тока I в проводнике прямо пропорциональна напряжению на его концах U и обратно пропорциональна сопротивлению проводника R. Закон Ома для однородного участка цепи имеет вид zakon oma ,

где U — напряжение на концах участка цепи измеряют в вольтах (В), a R — сопротивление цепи. Сопротивление измеряют в омах:om.

Рассмотрим проводник в форме тонкой цилиндрической трубки длиной l и площадью поперечного сечения S. Если на концах проводника поддерживается постоянное напряжение U, то внутри проводника будет существовать электрическое поле напряжённостью Е:

E=U/l . Направлено поле вдоль оси проводника. Если плотность тока одинакова в любой точке проводника, то сила тока в проводнике I=j S. С другой стороны согласно закона Ома сила тока I=U/R, где R=ρудl/S.

Объединив все выделенные выражени получим I = jS = U/R = ElS/ρудl преобразовывая данную формулу, получим j = E/ρуд или j = Eσ , где σ = 1/ρуд - удельная электрическая проводимость, измеряется в сименсах (См = Ом-1 м-1).

Формула j = Eσ называется законом Ома в дифференцированной форме.

Если участок цепи однородный (рис. а), т.е. не содержит источника тока, или неоднородный (рис. б), т.е содержит источник тока как один из проводников, то напряжение на концах цепи между точками 1 и 2 для однородного участка: напряжение равно разности потенциалов между концами проводника U = φ1 - φ2; для неоднородного участка U=(φ1 - φ2)±ε.

cxema cepi

+ε - ЭДС положительная, если направление тока совпадает с направлением от - к+ внутри источника .

-ε - ЭДС отрицательная, если направление тока противоположно направлению от - к + внутри источника .

В этом случае закон Ома для неоднородного участка цепи (рис. б) будет иметь вид:

zak Oma dla neodnorodnoho

Если цепь замкнута,Zak Oma cep или polnaya cep то φ1 = φ2 , тогда закон Ома для замкнутой (полной) цепи примет вид: I=ε/(R+r). Формулировка Закона Ома для полной цепи и для участка цепи — это утверждение пропорциональности. Устанавливается достаточна простая алгебраическая связь между величинами силы тока, суммы сопротивлений (r+R) и ЭДС источника тока: Сила тока в электрической цепи, прямо пропорциональна ЭДС источника и обратно пропорциональна сумме внутреннего сопротивления этого источника и общего сопротивления цепи.

ЭДС замкнутой цепи равна сумме внешнего и внутреннего напряжений ε = Uвнеш +Uвнут .

Uвнеш= I R, Uвнут = Ir

Наиболее понятное и простое применение Закона Ома в такой формулировке — это электрическая цепь с одним источником тока в ветви (контуре). Кроме Закона Ома, для расчёта электрических цепей, необходимо знать правила Кирхгофа, а также иметь базовые представления об элементах цепей, таких как узлы, ветви, контуры, двухполюсники и т. п. Но ограничившись только Законом Ома для полной цепи можно сделать несколько важных выводов.

Самый простой пример иллюстрирующий влияние внутреннего сопротивления источника тока — это гальванические элементы (батареи) и аккумуляторы. Способность источника тока выдавать большое значение силы тока напрямую зависит от его внутреннего сопротивления. Чем оно больше, тем меньший ток способен выдать источник ЭДС.

Допустим у нас имеется аккумуляторная батарея на 12 Вольт (В), а в качестве нагрузки мы применяем лампу накаливания мощностью 24 Ватт (Вт). Как узнать сопротивление нагрузки при устоявшемся режиме работы, то есть когда лампа горит в полный накал? Это сделать достаточно просто. Мощность (24 Вт) делим на напряжение (12 В), в итоге мы получаем расчётное значение рабочего тока в 2 Ампер (А).

Чтобы вычислить сопротивление нагрузки, нужно воспользоваться Законом Ома для участка цепи. В нашем случае падение напряжения на нагрузке, то есть лампе накаливания должно быть 12 В, а рабочий ток для выхода на мощность в 24 Вт будет 2 А. Применяем закон пропорциональности и находим сопротивление нагрузки. В итоге мы получаем расчётное рабочее сопротивление нагрузки R равное 6 Ом (12 В/2 А).

Теперь же вернёмся к нашему источнику ЭДС с его внутренним сопротивлением. Как оно будет влиять на ток в цепи? Допустим, что мы измерили напряжение на клеммах аккумулятора и оно оказалось равным 12,5 Вольт, затем подключили нашу нагрузку — лампочку накаливания 24 Ватт, на номинальное напряжение в 12 Вольт. Вроде бы всё должно работать, но оказывается, что лампа светит тускло, в половину накала. В чём же может быть причина? Вот тут как раз таки можно и нужно применять Закон Ома для полной цепи. Необходимо учитывать внутреннее сопротивление источника. Так как визуально лампа светит тускло, значит не выходит на свою норму в потребления 24 Вт, а значит напряжение и ток на ней недостаточны. Казалось бы, подключили к аккумулятору у которого на выходе 12,5 Вольт, но что-то тут не так. Что именно?

Нужно провести измерение падения напряжения непосредственно на лампе, тогда окажется, что оно совсем не 12 Вольт, а гораздо меньше, допустим 6 Вольт. Условно предположим, что сопротивление лампы в 6 Ом стабильно и не зависит от нагрева. Тогда мы можем вновь воспользоваться Законом Ома для участка цепи, чтобы найти значение тока. В нашем случае это достаточно просто сделать. Необходимо падение напряжения на лампе в 6 Вольт, разделить на её сопротивление в 6 Ом. В результате мы получим значение тока в цепи равное 1 Ампер. Вот оно что! Для того, чтобы лампа горела как положено и давала все свои 24 Ватт мощности, нужен ток в 2 А, а у нас ровно половина — 1 А. Можно сразу сказать, что на лампе выделяется мощность всего в 6 Ватт, что явно недостаточно.

Почему же при ЭДС источника — аккумулятора в 12,5 Вольт происходит такое, казалось бы несоответствие? Сумма падений напряжений в контуре, а у нас как раз таки один единственный контур цепи, всегда равно ЭДС источника. Отсюда делаем вывод, что у нас куда-то делось 6,5 Вольт (12,5-6). А делись они вот куда. Внутреннее сопротивление источника тока можно выделить наружу только в схеме, а на практике оно как бы глубоко запрятано в конструкции источника. Разумеется, что разобрав источник на части, мы не обнаружим там никакого внутреннего сопротивления. Оно существует умозрительно, на схемах, для удобства, а в реальности это характеристика сторонних сил, которые создают ту самую ЭДС.

В итоге, у нас выходит, по вышеприведённому примеру, что сам источник тока съедает мощность на себя, да ещё к тому же она больше, чем полезная нагрузка — лампочка. При токе в 1 А, и при падении напряжения в 6,5 В на внутреннем сопротивлении мы имеем 6,5 Вт бесполезных потерь на источнике тока!!! Выдаёт на нагрузку 6 Вт, а сам кушает чуть больше — 6,5 Вт. Эффективность заведомо меньше 50%. Вот вам и применение Закона Ома для полной цепи.

Давайте попробуем решить обратную задачу. Какое внутреннее сопротивление источника тока с ЭДС равной 12,5 Вольт должно быть, чтобы падение напряжения на лампе в 24 Вт было равным 12 В?

Исходя из задачи, можно сразу же вычислить падение напряжения на внутреннем сопротивлении. Оно должно быть в нашем случае равным всего 0,5 В. Но для того, чтобы пользуясь Законом Ома вычислить значение внутреннего сопротивления, нам нужно знать силу тока. Учитывая, что мы хотим получить с нагрузки 24 Вт мощности, то для этого нам необходим ток в 2 Ампер. Для расчёта можно смело брать эту величину. Теперь узнать внутреннее сопротивление источника достаточно просто. Оно будет равно 0,5 В делённые на ток в 2 А, то есть 0,25 Ом. Эта величина значительно меньше той, которая была в примере, когда лампа горела тускло, всего на 6 Вт мощности.

При внутреннем сопротивлении в 0,25 Ом и при нагрузке в 6 Ом мы получим достаточно эффективное использование источника тока. На нагрузке у нас будет выделятся мощность в 24 Вт, а потери источника на внутреннем сопротивлении составят всего на всего 1 Вт (0,5Х2). Соотношение меньше чем 1 к 10. Однако, если мы с вами к источнику с таким малым внутренним сопротивлением подключим нагрузку в 0,25 Ом, то есть внутреннее сопротивление и сопротивление нагрузки равны, тогда ток в цепи подскочит до значения 25 А (12,5/0,5). На нагрузке будет выделятся мощность равная 156,25 Вт и точно такая же будет расходоваться в самом источнике.

Правильное понимание Закона Ома для полной цепи позволяет правильно рассчитать и выбрать источник тока по нагрузке, а также позволяет своевременно выявить дефекты источников тока. Тот источник тока, который не пригоден для низкоомной нагрузки, потому как его внутреннее сопротивление в больше или равно сопротивлению нагрузки, будет вполне пригоден в эксплуатации для питания электрической цепи с нагрузкой в 10 раз большим сопротивлением, чем его собственное.

Чем большую мощность нужно получить на нагрузке при малом значении ЭДС, тем меньше должно быть внутреннее сопротивление источника. Поэтому самыми лучшими источниками постоянного тока (DC) в настоящее время остаются химические аккумуляторы, хотя вполне возможно, что их могут превзойти в этом полупроводниковые источники тока — солнечные батареи.

Оптимальным считается, когда падение напряжения на внутреннем сопротивлении, более чем в 10 раз меньше чем падение напряжения на полезной нагрузке. Если говорить языком пропорциональности, то это означает, что зная сопротивление нагрузки или её мощность, нужно выбирать источник тока, где его внутреннее сопротивление (импеданс) будет более чем в 10 раз меньшим.

Иногда в цепи используется не один а несколько источников, которые соединены между собой

а) последовательно:

cep istochnik1 в этом случае закон Ома для замкнутой цепи будет иметь вид zakon3

б) параллельно:

cep istochnik2 в этом случае закон Ома для замкнутой цепи будет иметь вид        

zakon4, где vnutr sopr

Внимание! Важной характеристикой полной электрической цепи является сила тока короткого замыкания Iкз.

Рассмотрим замкнутую полную электрическую цепьcep

Для данной цепи закон Ома запишется в виде I=ε/(R+r).

Эта формула выражет закон Ома для полной цеписила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного R  (cd) и неоднородного r (ab) участков цепи.

Сопротивление r неоднородного участка  можно рассматривать как внутреннее сопротивление источника тока. В этом случае участок (ab) на рис. 1.8.2 является внутренним участком источника. Если точки a и b замкнуть проводником, сопротивление которого мало по сравнению с внутренним сопротивлением источника (R << r), тогда в цепи потечет ток короткого замыкания tok kz

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой   и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер).

Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.
В ряде случаев для предотвращения опасных значений силы тока короткого замыкания к источнику последовательно подсоединяется некоторое внешнее сопротивление. Тогда сопротивление r равно сумме внутреннего сопротивления источника и внешнего сопротивления, и при коротком замыкании сила тока не окажется чрезмерно большой.
Если внешняя цепь разомкнута, то Δφba=-Δφab =eds  , т. е. разность потенциалов на полюсах разомкнутой батареи равна ее ЭДС.
Если внешнее нагрузочное сопротивление R включено и через батарею протекает ток I, разность потенциалов на ее полюсах становится равной  Δφba = eds  – Ir.

Вернуться к конспектам урока

О сайте|Разработчики
fizmatushki © 2019
e-mail:fizmatushki@yandex.ru